

Pseudorandom Generators

CS/ECE 407

Today's objectives

Describe pseudorandomness/pseudorandom generators

Define negligible functions

Introduce indistinguishability

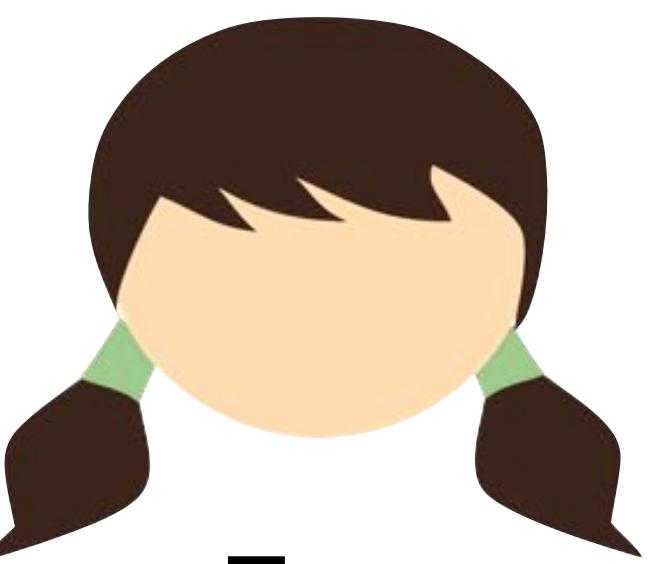
Alice

$$m \in \{0,1\}$$

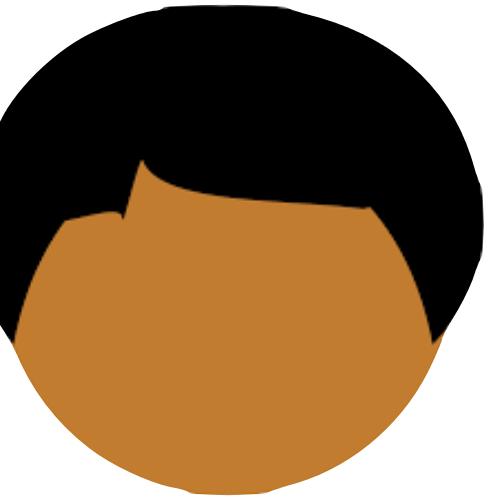
$$k \xleftarrow{\$} \{0,1\}$$

$$ct \leftarrow m \oplus k$$

ct



Eve



Bob

$$k \xleftarrow{\$} \{0,1\}$$

$$m' \leftarrow ct \oplus k$$

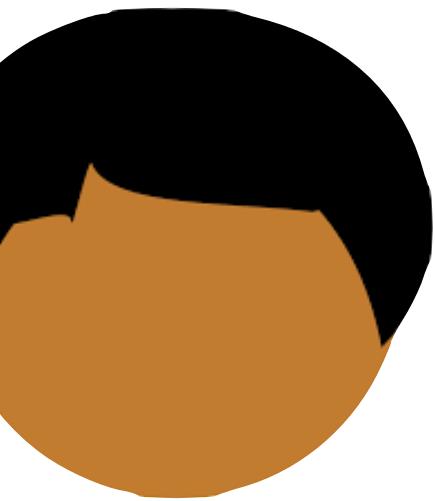
Alice

$$m \in \{0,1\}$$

$$k \leftarrow_{\$} \{0,1\}$$

$$ct \leftarrow m \oplus k$$

Eve



Bob

$$k \leftarrow_{\$} \{0,1\}$$

$$m' \leftarrow ct \oplus k$$

Question: what if Alice wants to send more than one bit?

Perfect Secrecy:

A cipher (Enc, Dec) is **perfectly secret** if for every message $m \in M$:

$$\left\{ c \mid \begin{array}{l} k \leftarrow_{\$} K \\ c = Enc(k, m) \end{array} \right\} \equiv \left\{ c \mid c \leftarrow_{\$} C \right\}$$

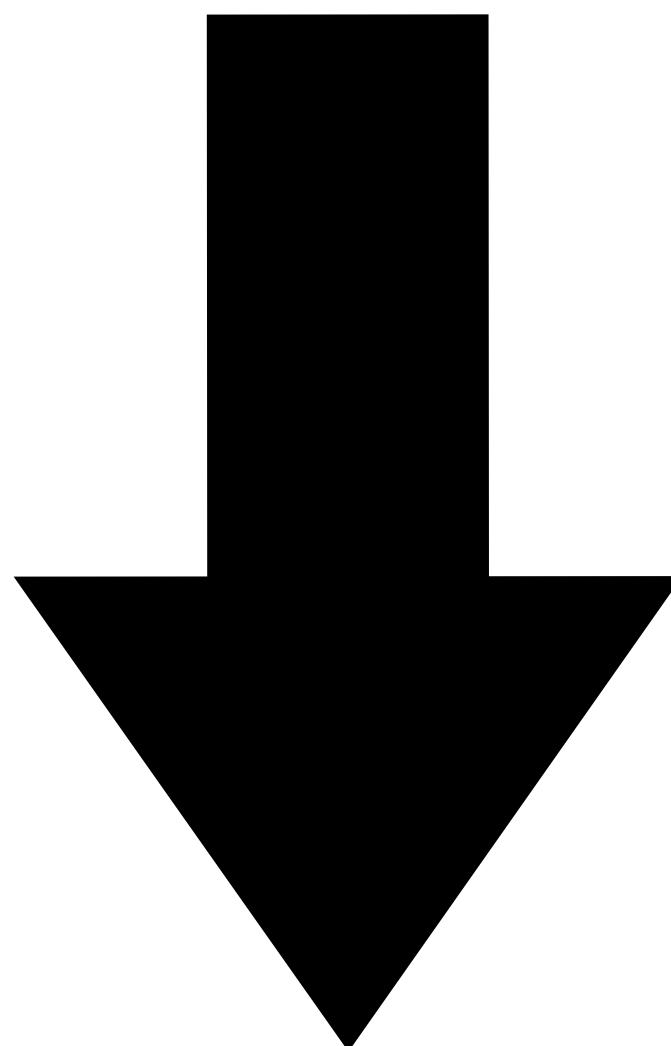
Theorem [Shannon 1949]: Any cipher achieving perfect secrecy requires that $|K| \geq |M|$.

“If we want to encrypt more stuff, we need more randomness”

Theorem [Shannon 1949]: Any cipher achieving perfect secrecy requires that $|K| \geq |M|$.

“If we want to encrypt more stuff, we need more randomness”

011010100

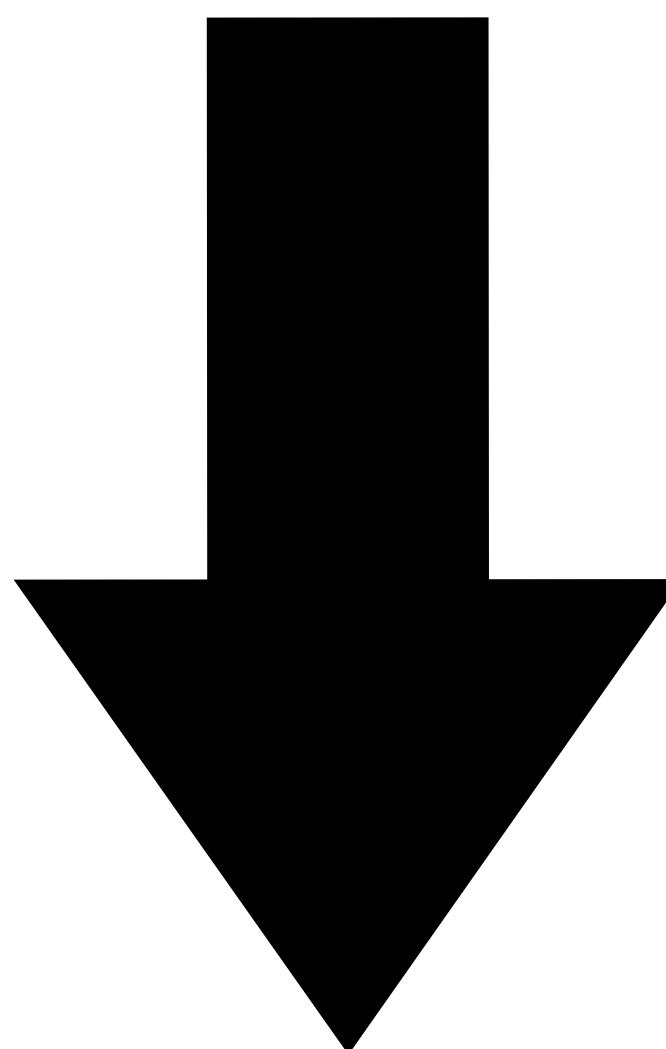


*Q: Can we turn a short random string
into a long random string?*

10110111011001

“If we want to encrypt more stuff, we need more randomness”

011010100

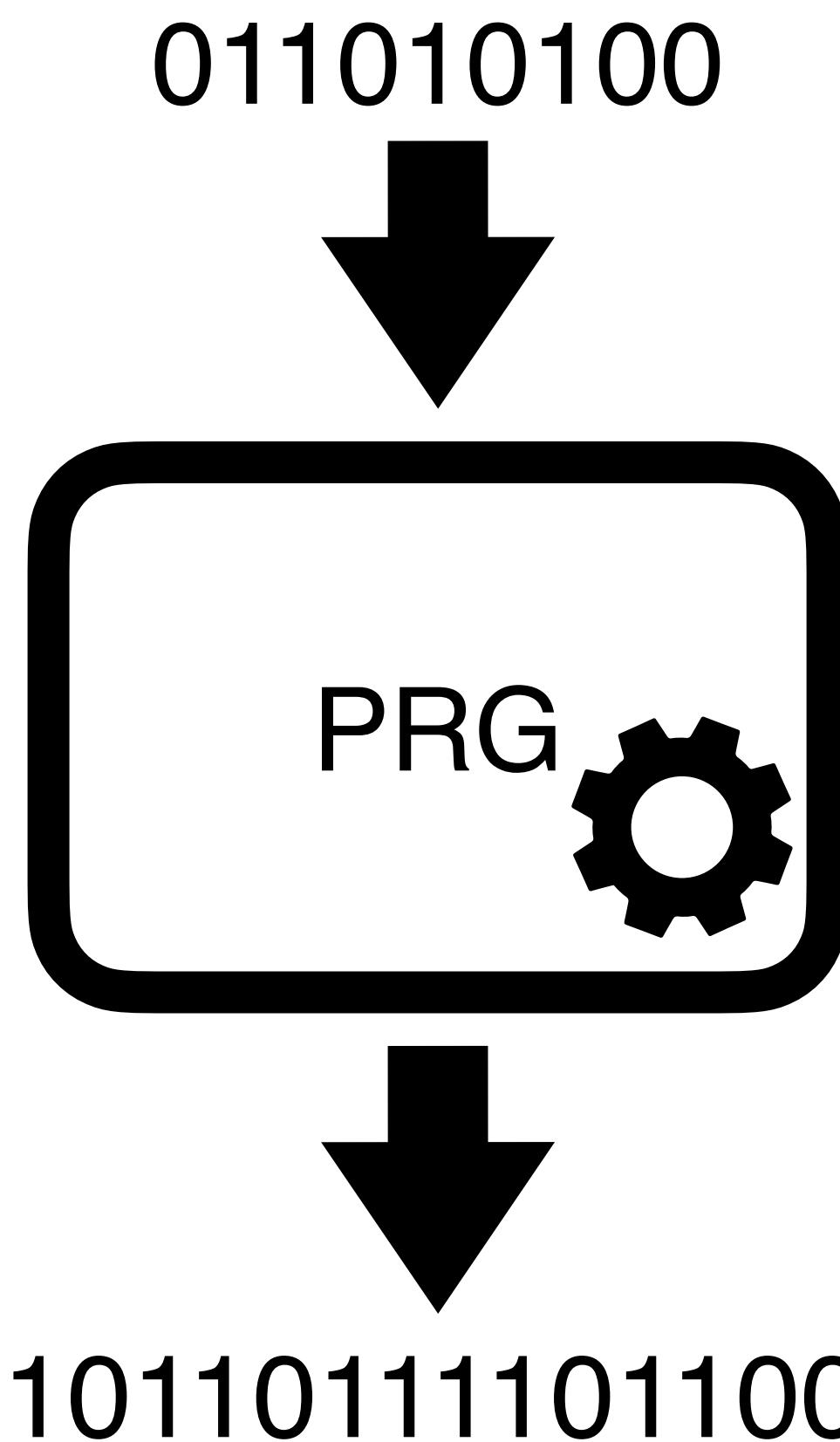


10110111011001

*Q: Can we turn a short random string
into a long random string?*

A: No, this is impossible

“If we want to encrypt more stuff, we need more randomness”



Q: Can we turn a short random string into a long random string?

A: No, this is impossible

Q: Can we turn a short random string into a long string that looks random?

A: Yes†! Use a pseudorandom generator!

Pseudorandom Generator (PRG)

A PRG is a function $G : \{0,1\}^n \rightarrow \{0,1\}^{n+s}$

Pseudorandom Generator (PRG)

A PRG is a function $G : \{0,1\}^n \rightarrow \{0,1\}^{n+s}$

Security?

Pseudorandom Generator (PRG)

A PRG is a function $G : \{0,1\}^n \rightarrow \{0,1\}^{n+s}$

Security?

Informal: “*no program can tell the difference between the output of G and truly random strings*”

Hardness as a basis for cryptography

Security?

Informal: “*no program can tell the difference between the output of G and truly random strings*”

Modern Cryptography

State assumptions

Define security

Design system

Prove: if assumption holds, system meets definition

Modern Cryptography

State assumptions

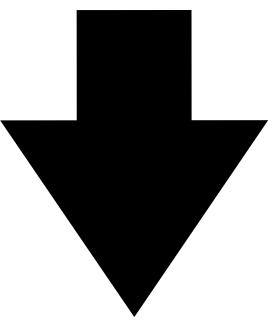
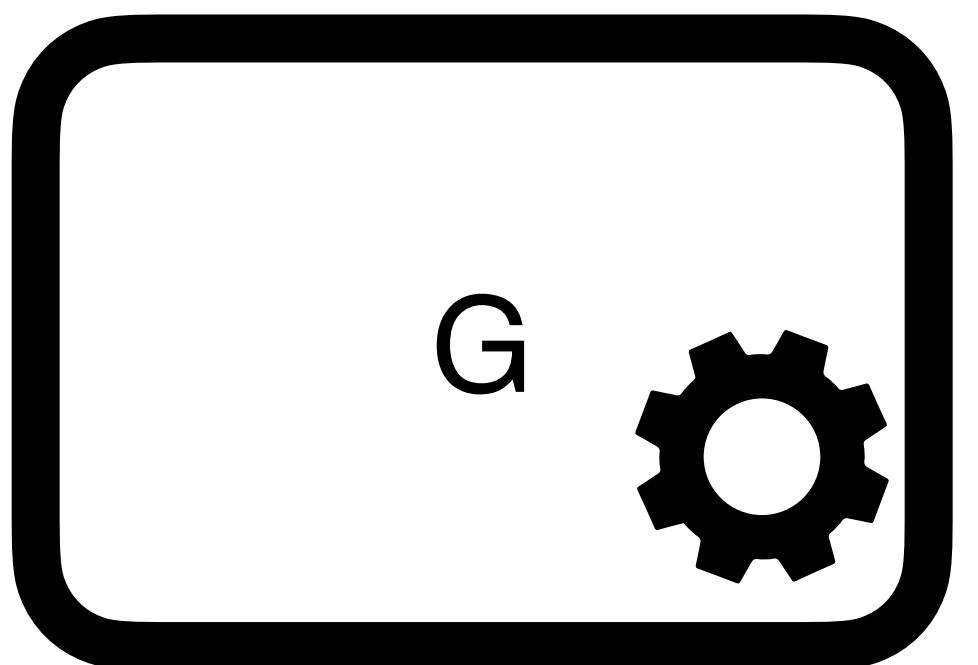
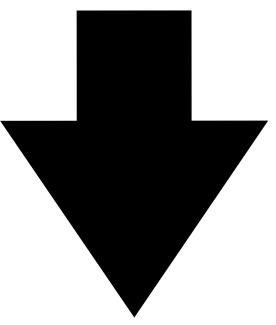
PRGs exist

Define security

Design system

Prove: if assumption holds, system meets definition

01101010

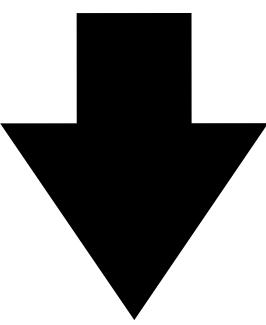
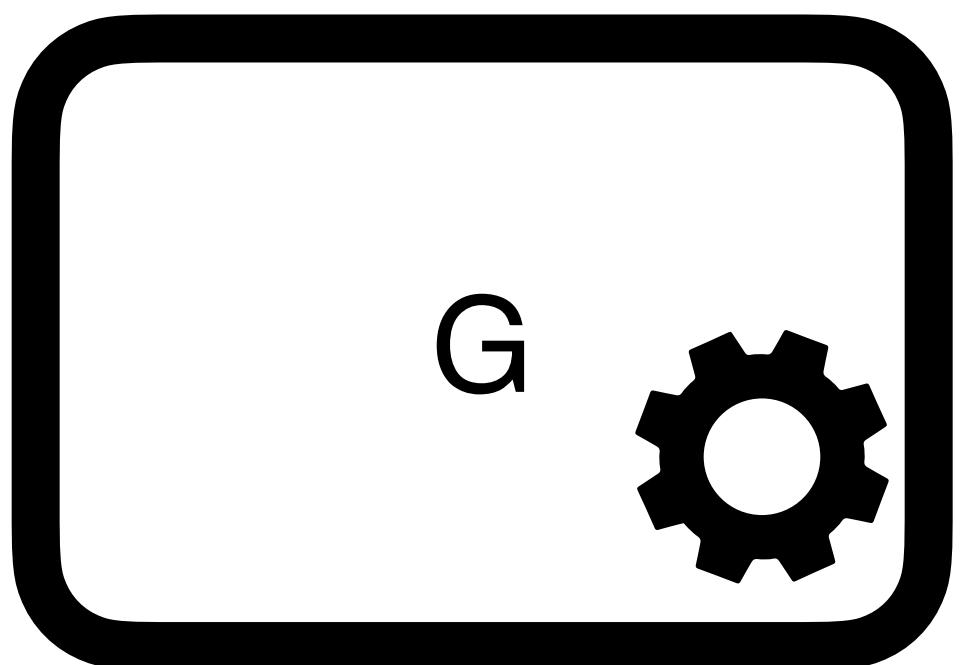
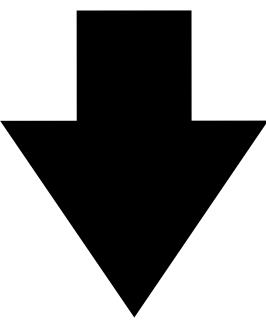


10110111011001

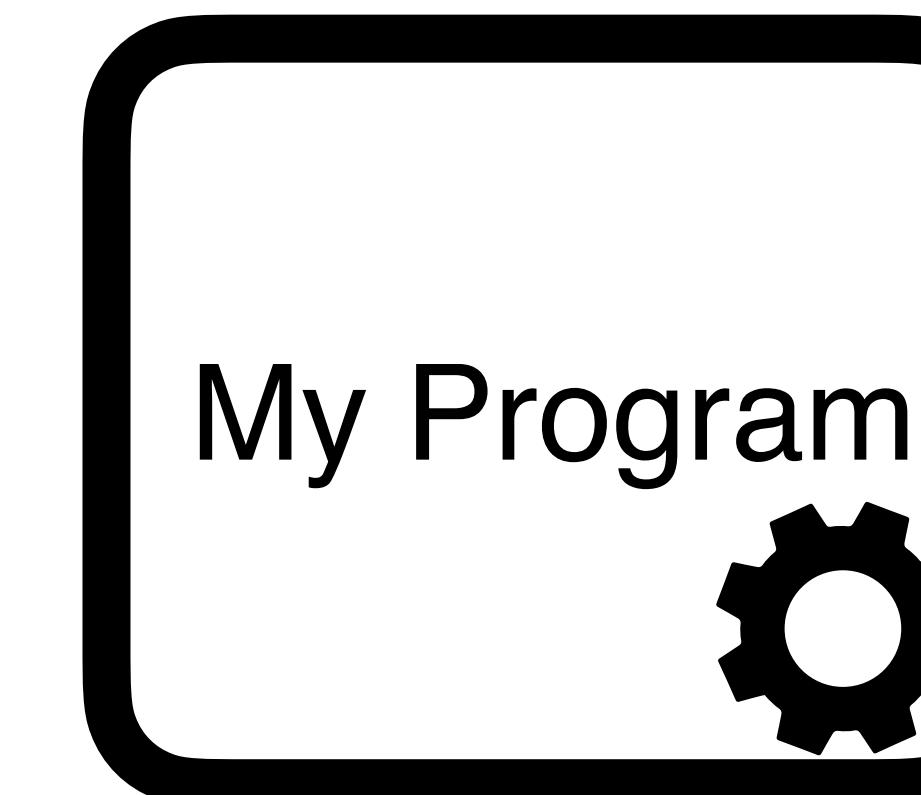
111011000110110



01101010



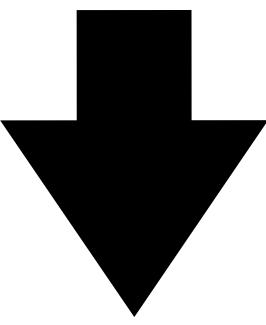
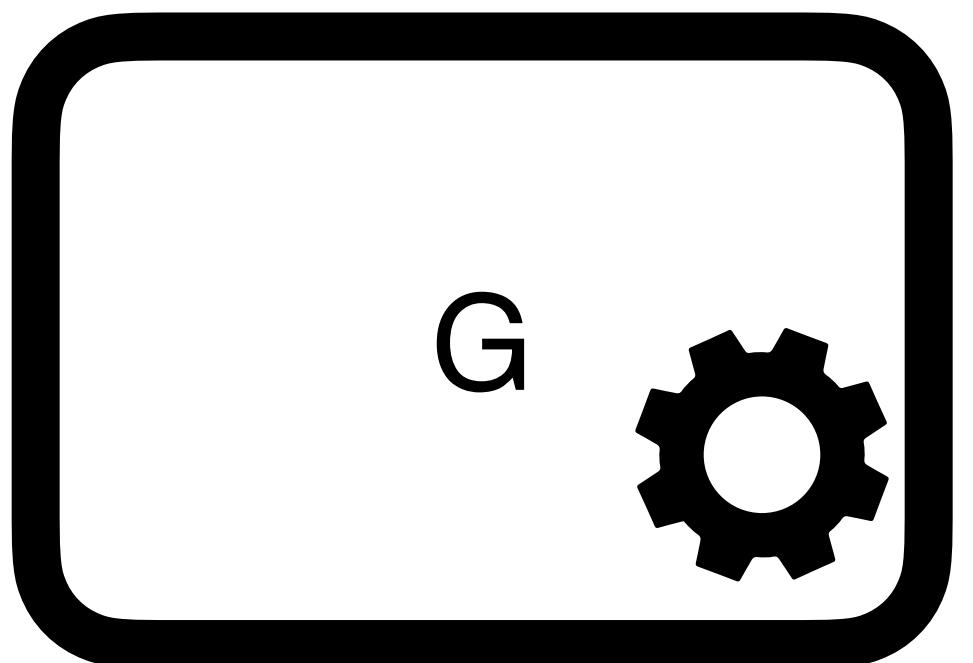
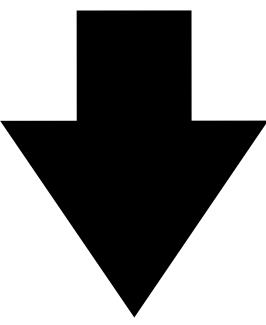
10110111011001



REAL/FAKE

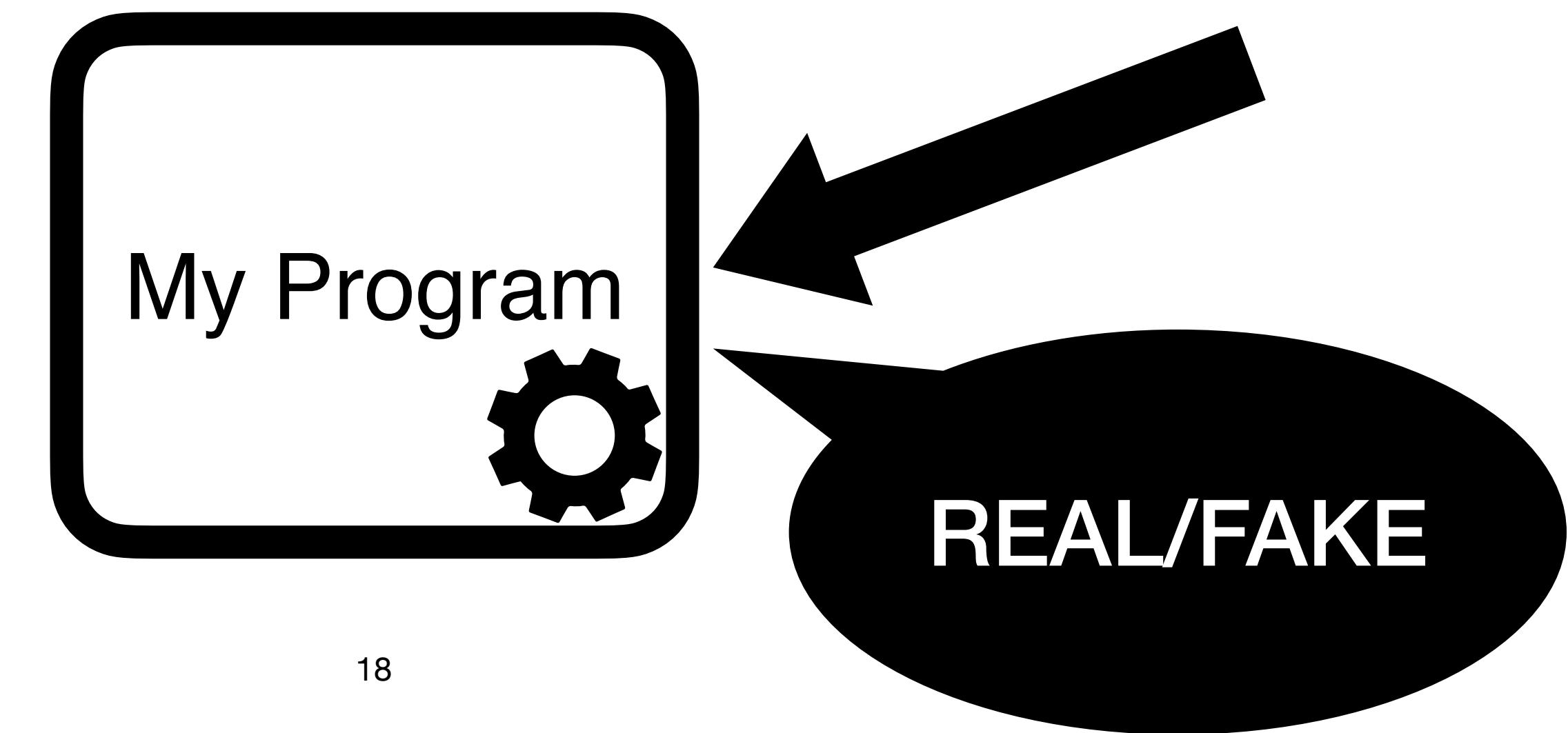
111011000110110

01101010

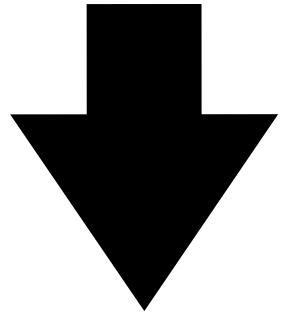
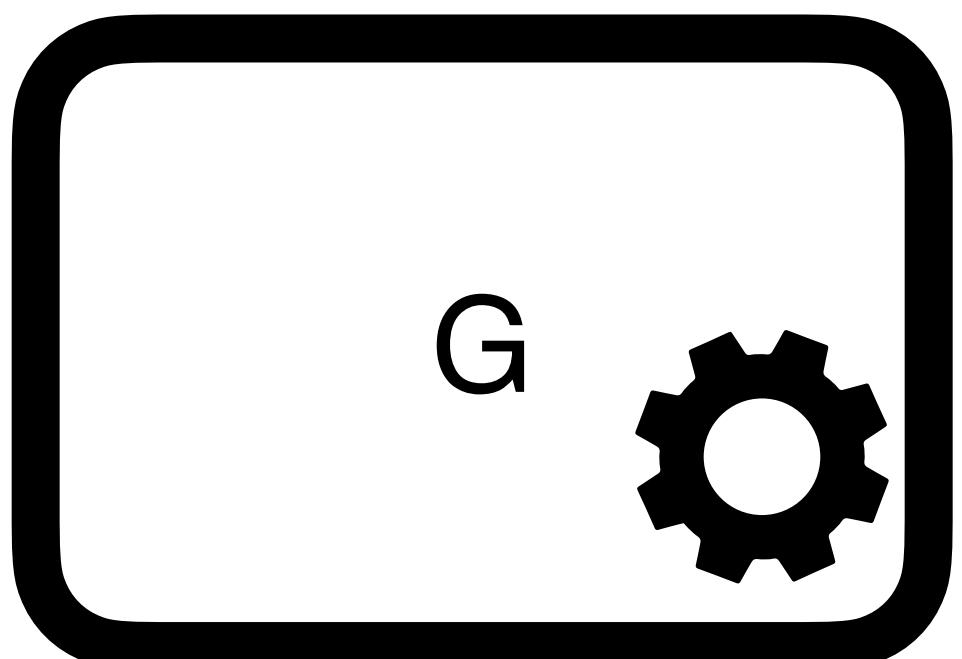


101101111011001

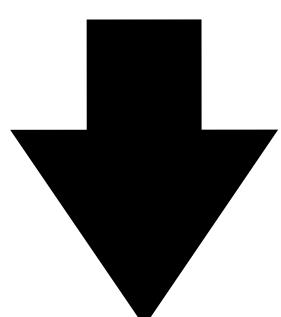
111011000110110



01101010

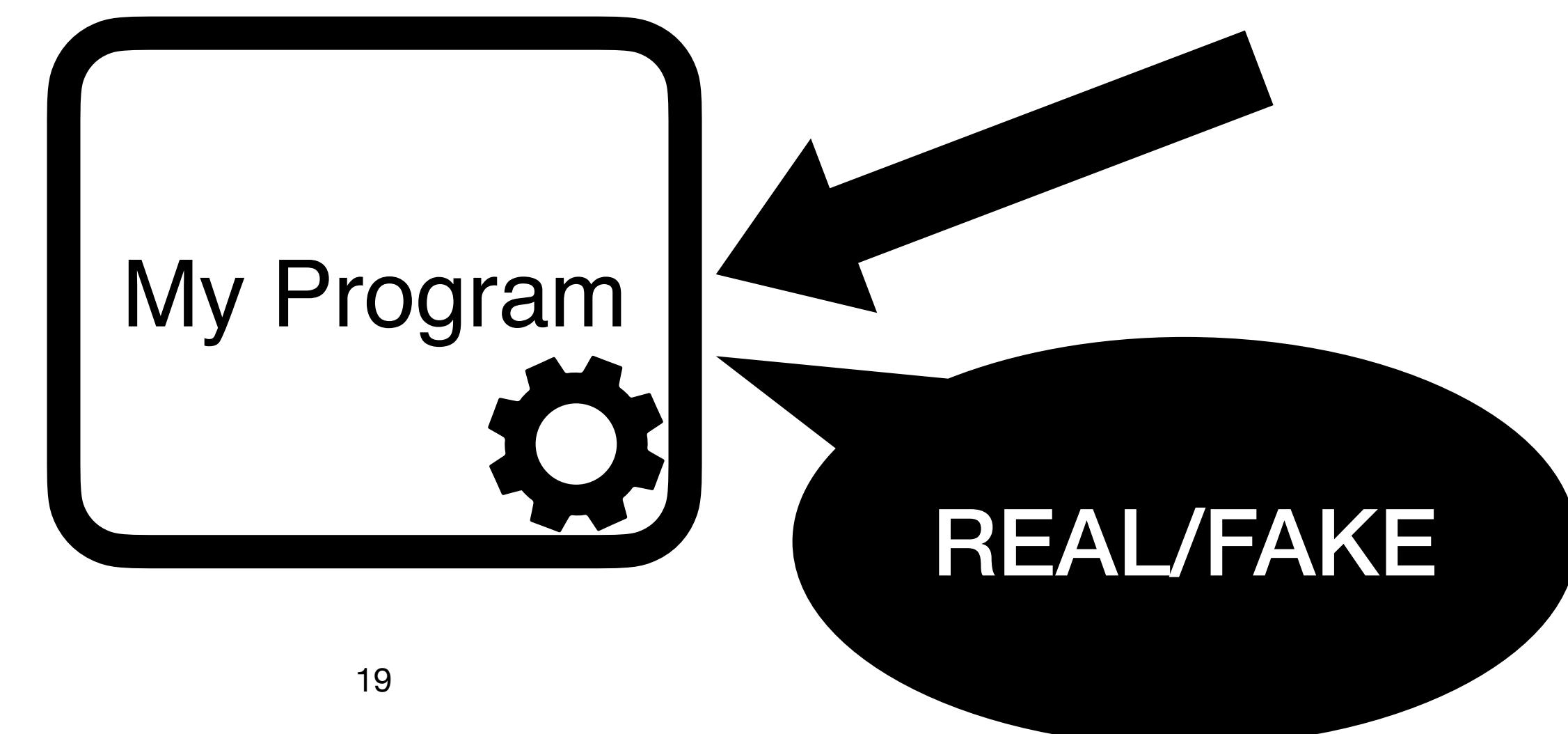


**G is a PRG if *no* program can
reliably win this game**

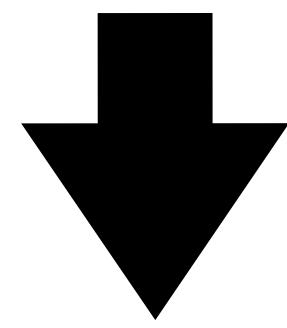
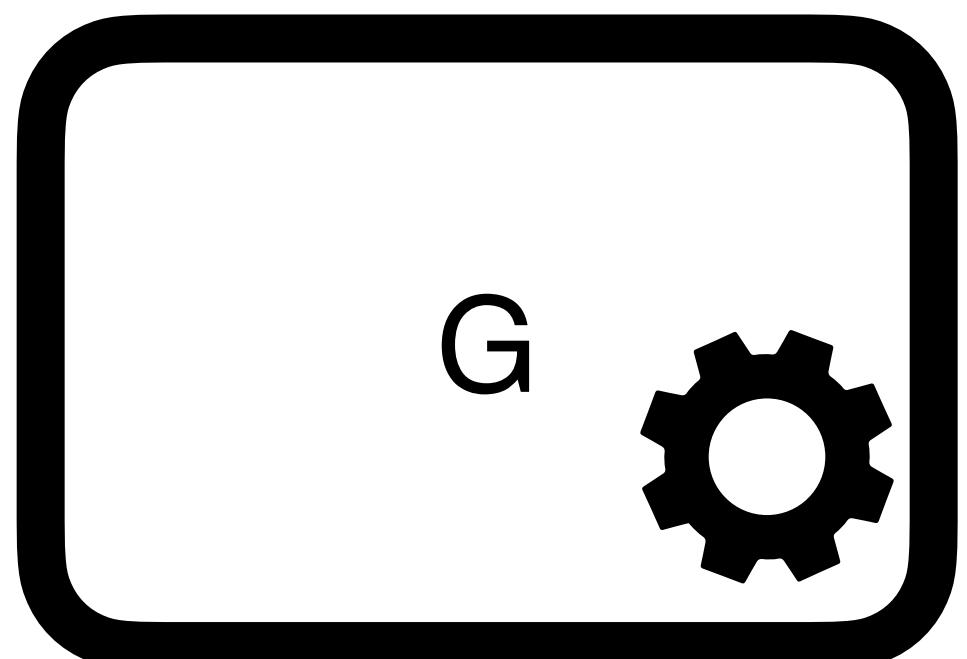
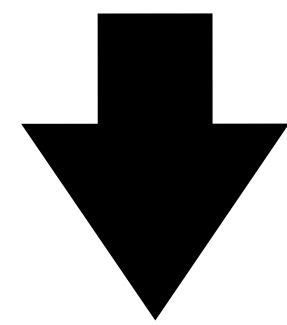


101101111011001

111011000110110



01101010



10110111011001

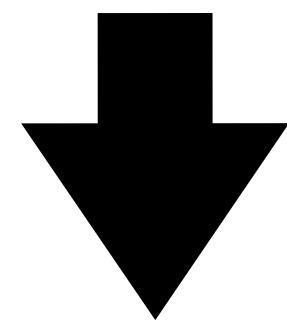
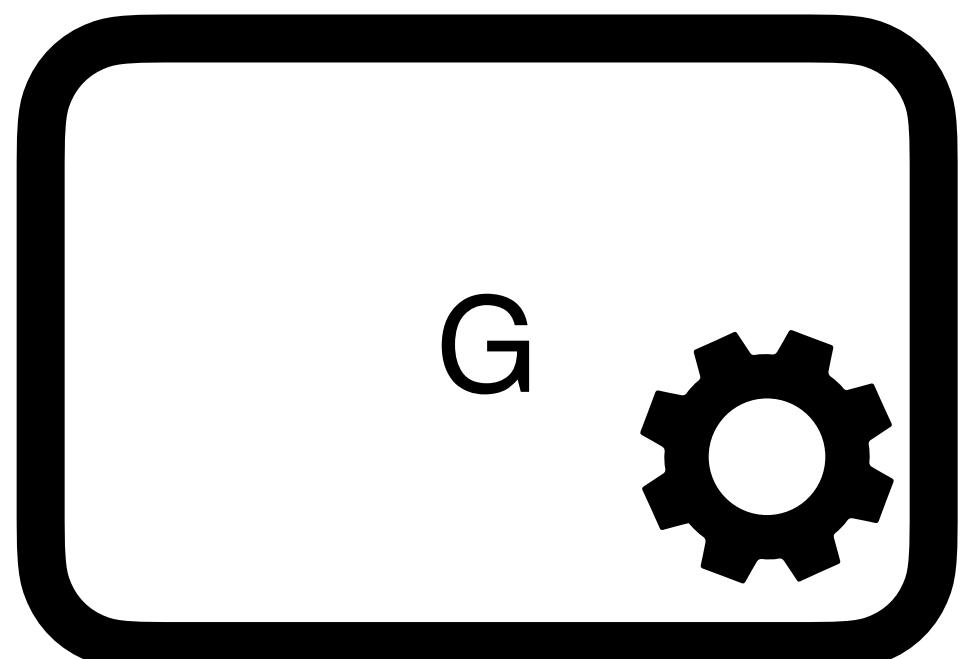
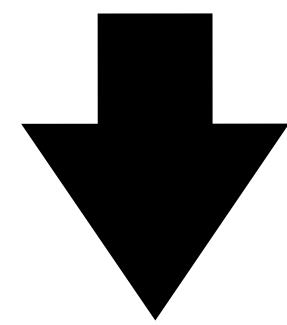
G is a PRG if *no* program can
reliably win this game

We believe that PRGs exist



111011000110110

01101010



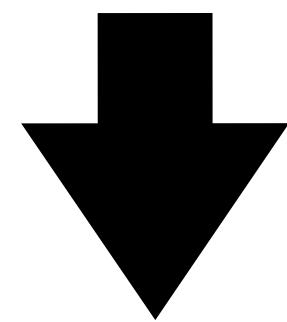
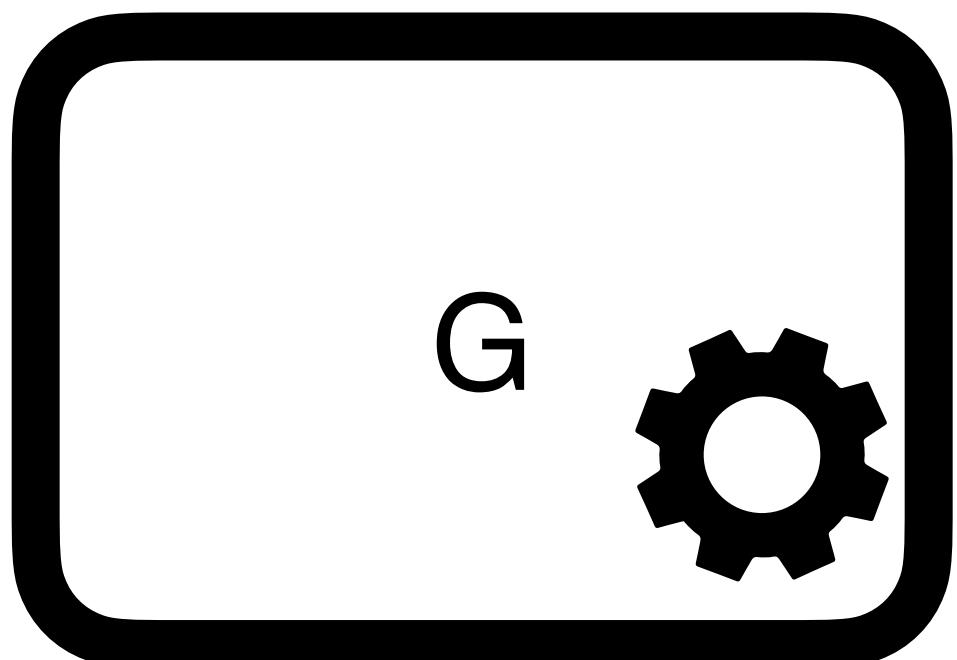
10110111011001

We believe that PRGs exist

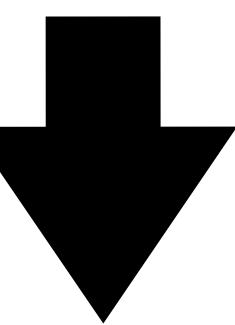
If they do, $P \neq NP$

**G is a PRG if *no* program can
reliably win this game**

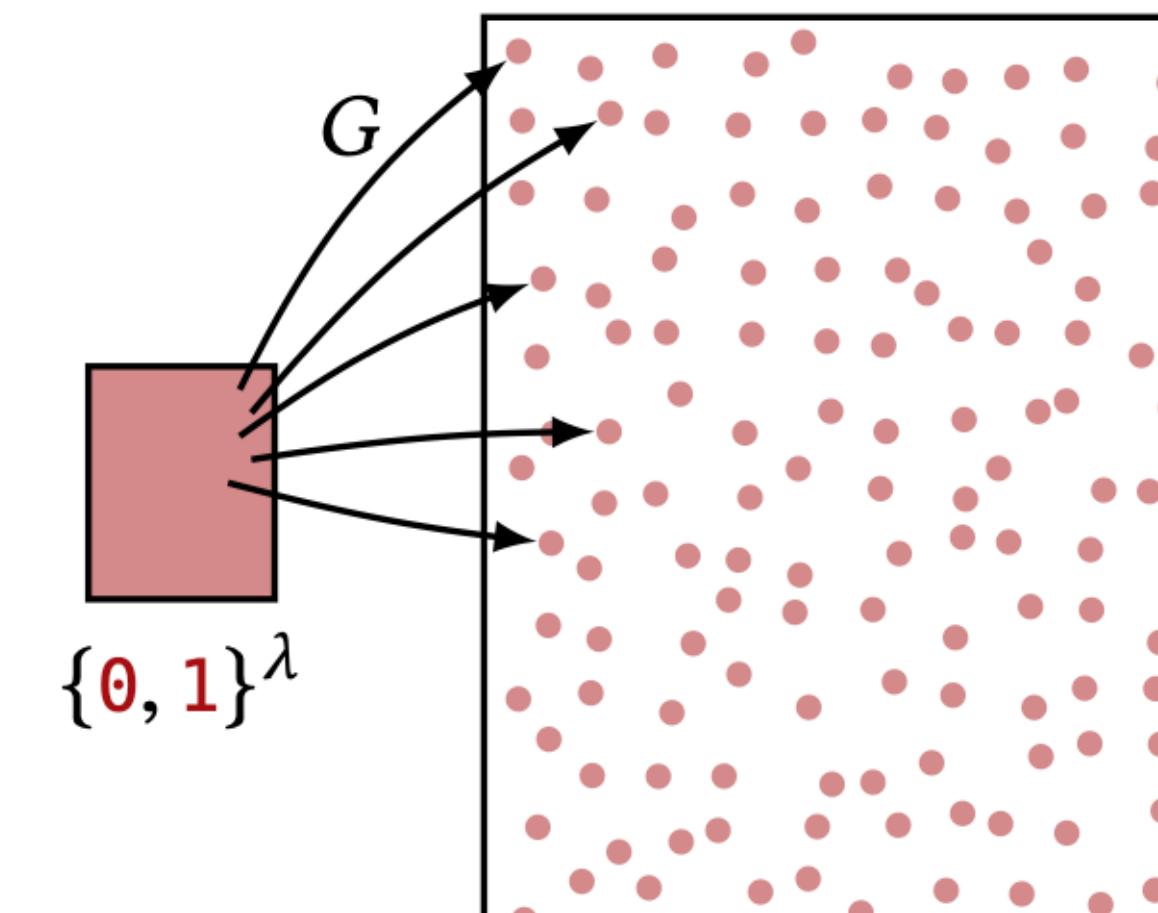
01101010



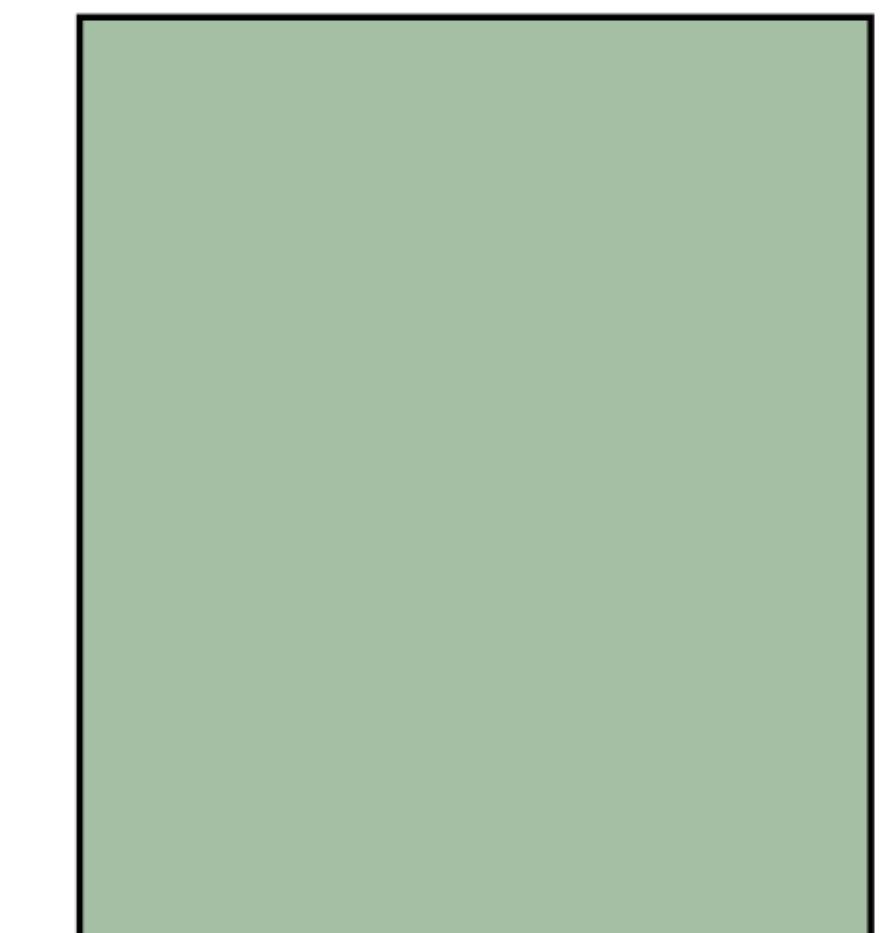
G



10110111011001



$\{0, 1\}^{2\lambda}$
pseudorandom distribution

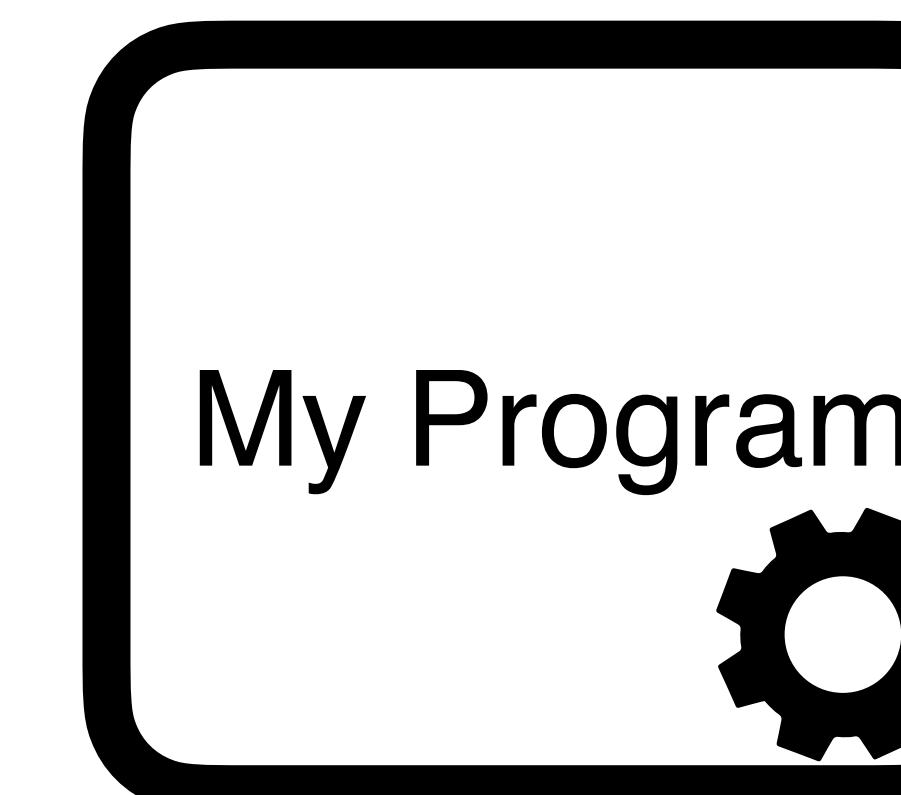


$\{0, 1\}^{2\lambda}$
uniform distribution

111011000110110

We believe that PRGs exist

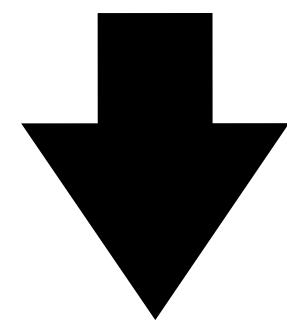
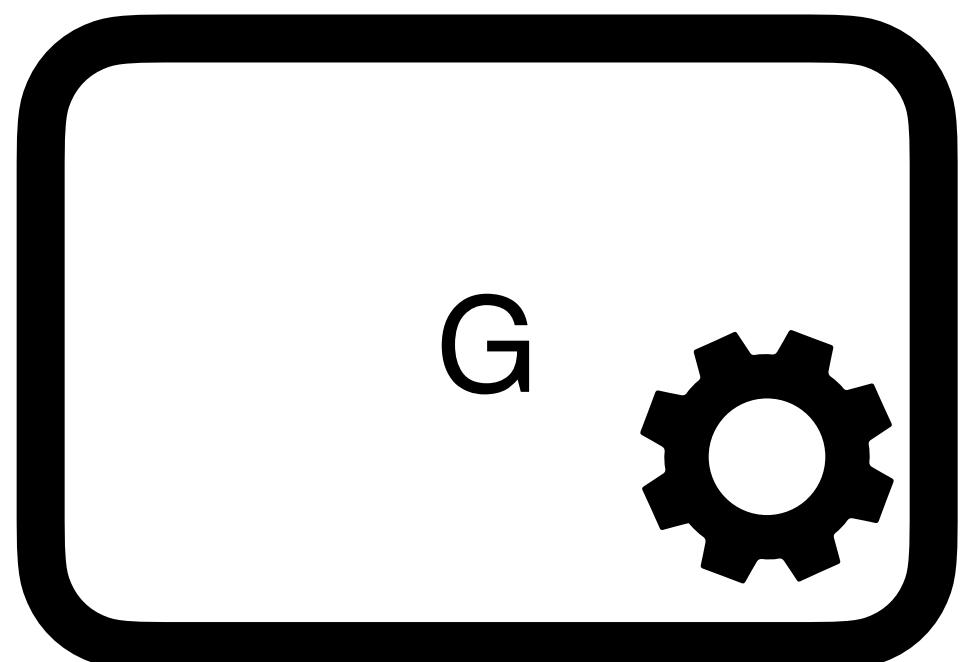
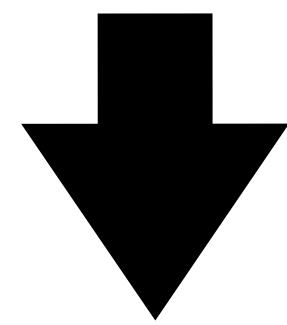
If they do, $P \neq NP$



My Program

REAL/FAKE

01101010



10110111011001

We believe that PRGs exist

If they do, $P \neq NP$

Goal: Make this more precise

111011000110110

Negligible Function

*A function μ is **negligible** if for any positive polynomial p there exists an N such that for all $n > N$:*

$$\mu(n) < \frac{1}{p(n)}$$

“ μ approaches zero really fast”

Probability Ensemble

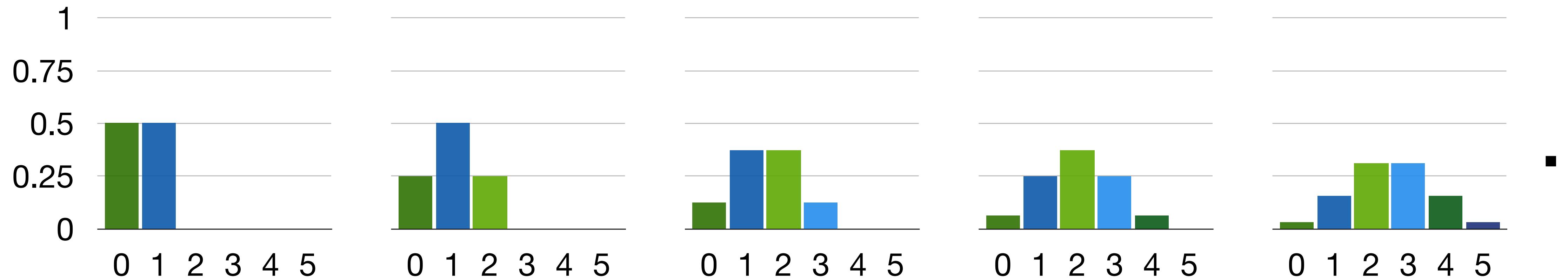
A probability ensemble is a family of probability distributions indexed by the natural numbers.

*We typically call this index the **security parameter**, λ*

Probability Ensemble

A probability ensemble is a family of probability distributions indexed by the natural numbers.

*We typically call this index the **security parameter**, λ*



Sum of outcome of λ coin tosses

Indistinguishability

$$\left\{ s \stackrel{?}{=} 0^\lambda \mid s \leftarrow_{\$} \{0,1\}^\lambda \right\}_\lambda \quad \left\{ \textit{false} \right\}_\lambda$$

These ensembles are “the same”

Indistinguishability

$$\left\{ s \stackrel{?}{=} 0^\lambda \mid s \leftarrow_{\$} \{0,1\}^\lambda \right\}_\lambda \quad \left\{ \textit{false} \right\}_\lambda$$

These ensembles are “the same”

As λ increases, they become harder to tell apart, **very** quickly

Indistinguishability

$$\left\{ s \stackrel{?}{=} 0^\lambda \mid s \leftarrow_{\$} \{0,1\}^\lambda \right\}_\lambda \quad \left\{ \textit{false} \right\}_\lambda$$

These ensembles are “the same”

As λ increases, they become harder to tell apart, **very** quickly

Imagine showing samples of one ensemble to an adversary. Could they guess which was sampled?

Indistinguishability

Let X, Y be two probability ensembles, and let A be an arbitrary (probabilistic) program that outputs 0 or 1. A 's **advantage** is as follows:

$$\text{Advantage}_A(\lambda) = \left| \Pr \left[b = 1 \mid \begin{array}{l} x \leftarrow_{\$} X_\lambda \\ b \leftarrow A(1^\lambda, x) \end{array} \right] - \Pr \left[b = 1 \mid \begin{array}{l} y \leftarrow_{\$} Y_\lambda \\ b \leftarrow A(1^\lambda, y) \end{array} \right] \right|$$

Indistinguishability

Let X, Y be two probability ensembles, and let A be an arbitrary (probabilistic) program that outputs 0 or 1. A 's **advantage** is as follows:

$$\text{Advantage}_A(\lambda) = \left| \Pr \left[b = 1 \mid \begin{array}{l} x \leftarrow_{\$} X_\lambda \\ b \leftarrow A(1^\lambda, x) \end{array} \right] - \Pr \left[b = 1 \mid \begin{array}{l} y \leftarrow_{\$} Y_\lambda \\ b \leftarrow A(1^\lambda, y) \end{array} \right] \right|$$

We say that X, Y are **indistinguishable**, written $X \approx Y$ if for every polynomial-time program A :

$\text{Advantage}_A(\lambda)$ is negligible

best strategy is only negligibly better than guessing

Indistinguishability

$$\left\{ s \stackrel{?}{=} 0^\lambda \mid s \leftarrow_{\$} \{0,1\}^\lambda \right\}_\lambda \quad \left\{ \textit{false} \right\}_\lambda$$

These ensembles are “the same”

They are indistinguishable[†]

[†] In fact, they are **statistically close**, which is even stronger

PRG security

Let G be a poly-time deterministic algorithm that on an input of length λ outputs a string of length $\lambda + s(\lambda)$.

G is a PRG if $s(\lambda)$ is always positive, and:

$$\left\{ G(k) \mid k \leftarrow_{\$} \{0,1\}^\lambda \right\}_\lambda \approx \left\{ r \mid r \leftarrow_{\$} \{0,1\}^{\lambda+s(\lambda)} \right\}_\lambda$$

PRG security

Let G be a poly-time deterministic algorithm that on an input of length λ outputs a string of length $\lambda + s(\lambda)$.

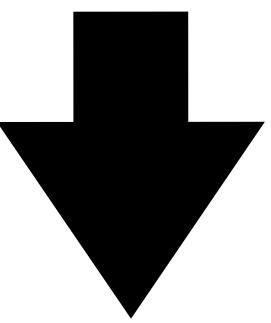
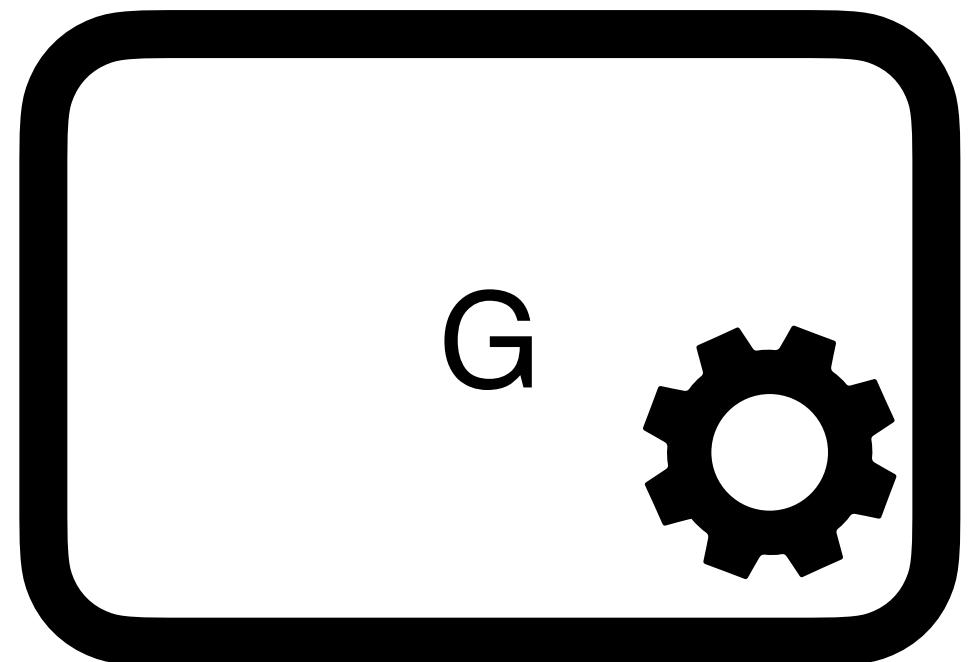
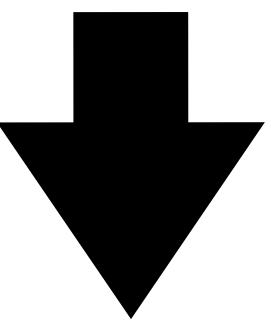
G is a PRG if $s(\lambda)$ is always positive, and:

$$\left\{ G(k) \mid k \leftarrow_{\$} \{0,1\}^\lambda \right\}_\lambda \approx \left\{ r \mid r \leftarrow_{\$} \{0,1\}^{\lambda+s(\lambda)} \right\}_\lambda$$

“If seed k is uniform and hidden, then $G(k)$ looks uniform”

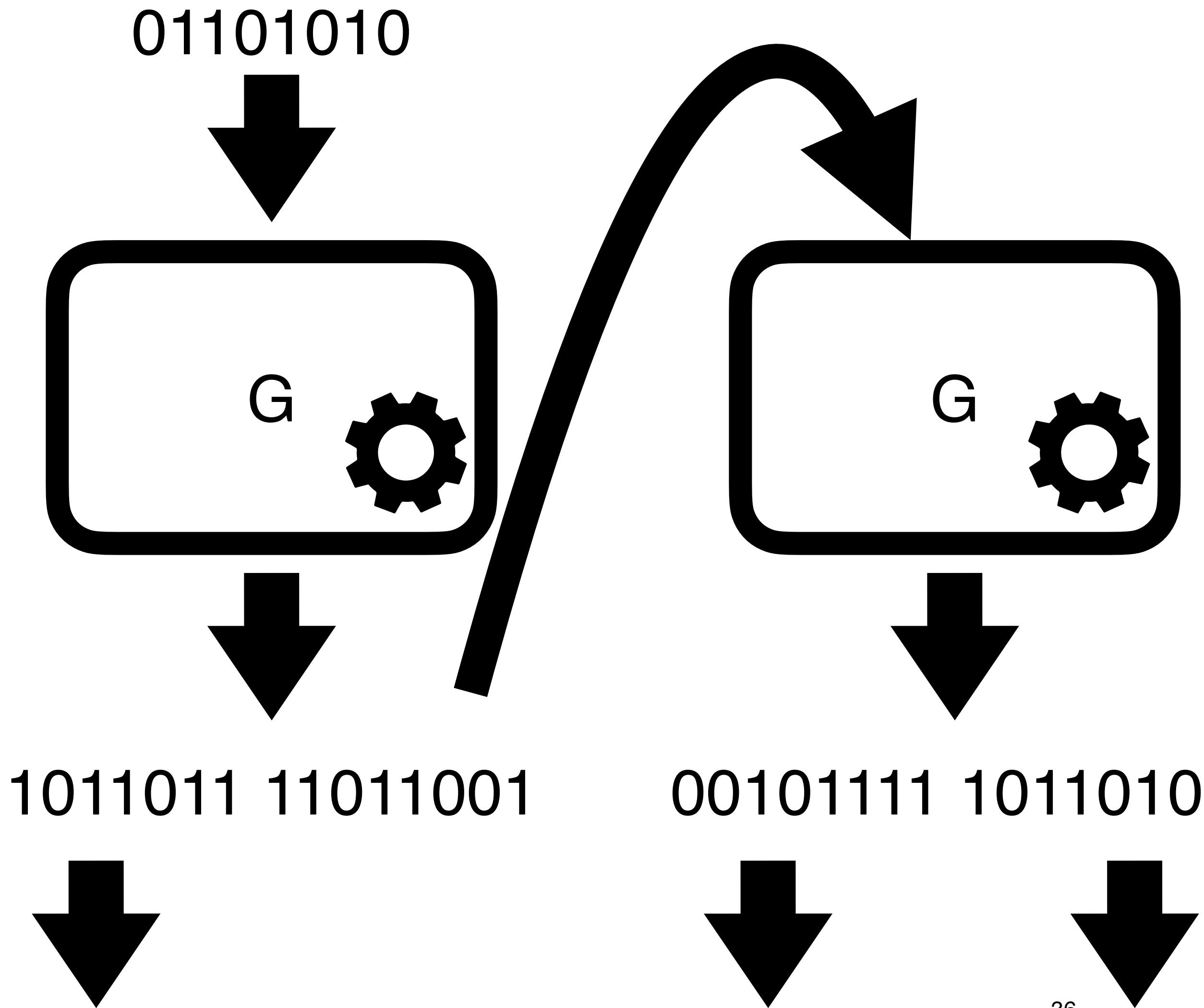
Stretching the output of a PRG

01101010

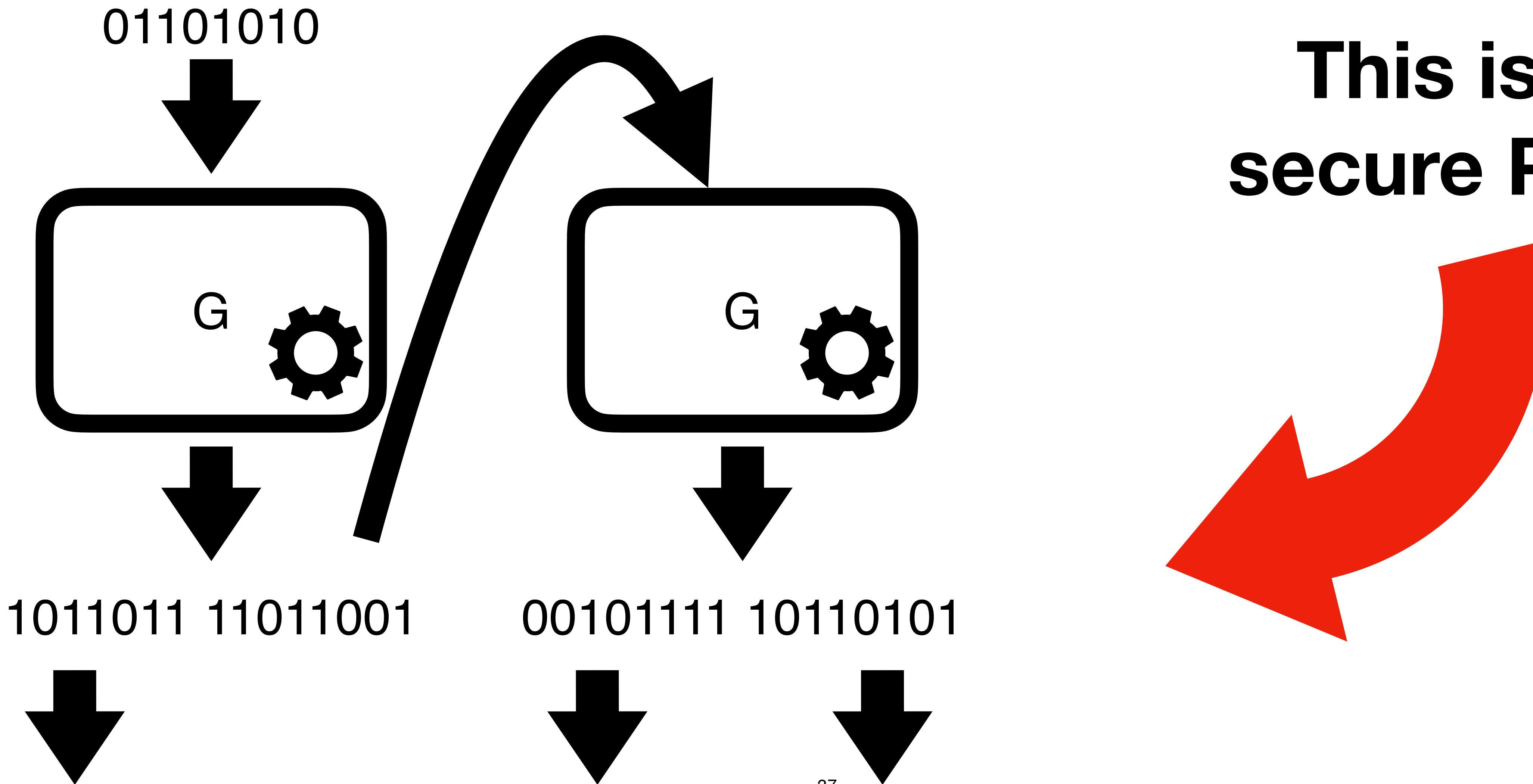


1011011 11011001

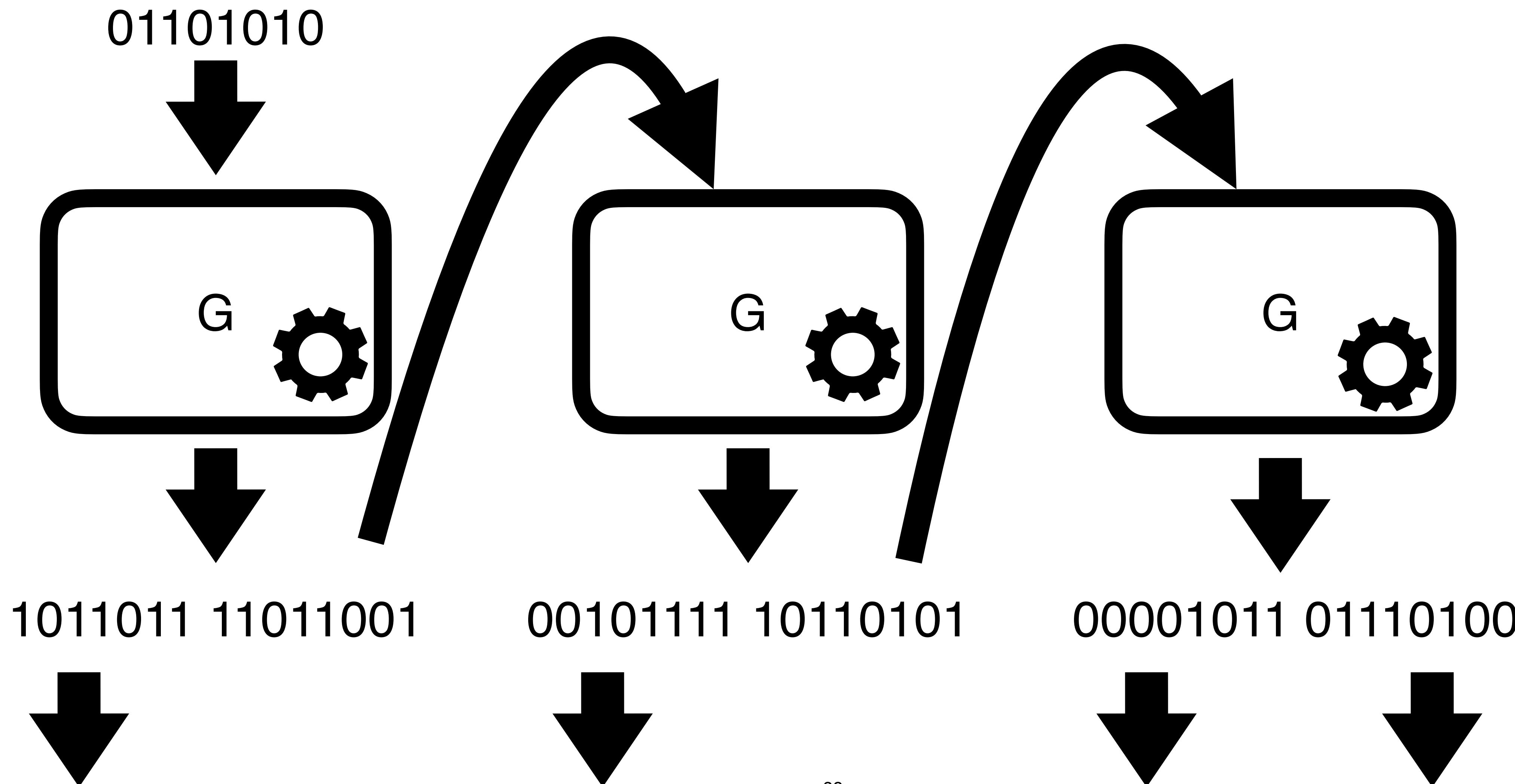
Stretching the output of a PRG



Stretching the output of a PRG



Repeatable any polynomial number of times

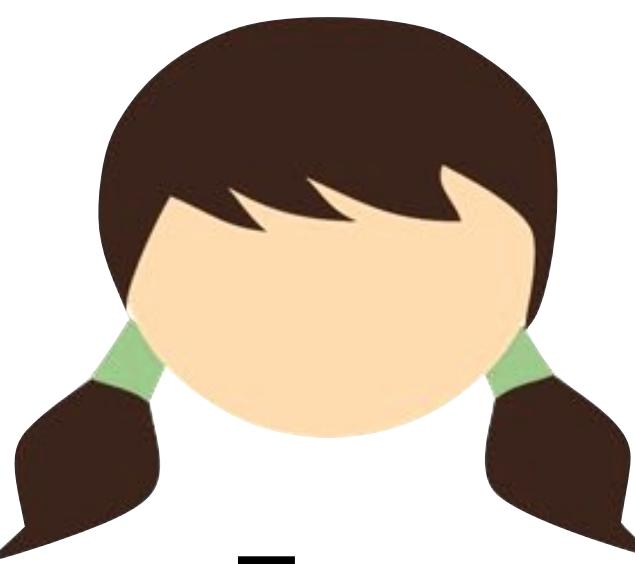


Alice

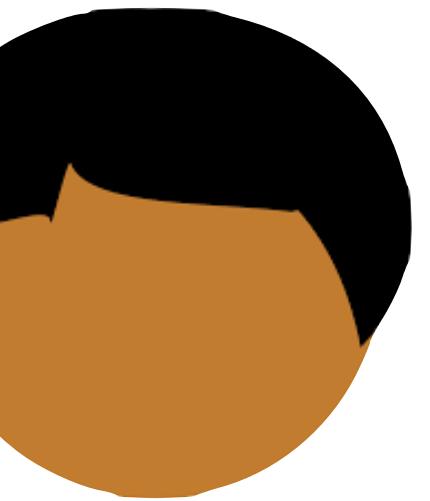
$$m \in \{0,1\}$$

$$k \leftarrow_{\$} \{0,1\}$$

$$ct \leftarrow m \oplus k$$



Eve



Bob

$$k \leftarrow_{\$} \{0,1\}$$

$$m' \leftarrow ct \oplus k$$

Question: what if Alice wants to send more than one bit?

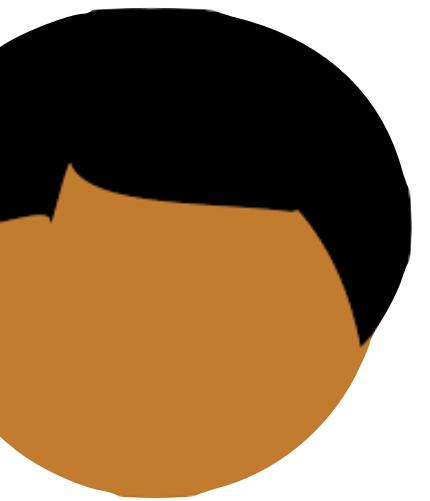
Alice

$$m \in \{0,1\}$$

$$k \leftarrow_{\$} \{0,1\}$$

$$ct \leftarrow m \oplus k$$

Eve



Bob

$$k \leftarrow_{\$} \{0,1\}$$

$$m' \leftarrow ct \oplus k$$

Question: what if Alice wants to send more than one bit?

Answer: Alice and Bob can exchange a short PRG seed, then expand it (effectively) indefinitely

Today's objectives

Describe pseudorandomness/pseudorandom generators

Define negligible functions

Introduce indistinguishability